The Center for Simulational Physics is unique in its approach to the investigation of physical systems. Many fascinating physical phenomena defy analysis by traditional approaches, particularly near phase transitions and in strongly interacting many-body systems. The Center for Simulational Physics makes extensive use of state-of-the-art computers to develop and solve models that mimic observed behavior and incorporate theory. The result is a realistic incorporation of a variety of advanced computational techniques.

Research carried out in the Center for Simulational Physics spans a vast range of length and time scales, from the microscopic to the cosmological. This versatility is the hallmark of computer simulation techniques. Computational methods used in the Center include Monte Carlo, Monte Carlo renormalization group, spin dynamics, molecular dynamics, density functional theory, close-coupling theory and hydrodynamics. Research focuses on both the application of computer simulation techniques to investigate the properties of physical systems, as well as the development of advanced analytical techniques and computational algorithms designed to enhance the efficiency and predictive power of the simulations. The extensive computing facilities available to the Center for Simulational Physics include Xeon systems with dual 16-core CPU’s and 116 Tbyte of network storage, 4 GPU compute nodes, and network access to the central high performance facilities operated by the Georgia Advanced Computing Resource Center (GACRC). Two Linux clusters are available with a total core count of approximately 10,000 compute cores. In addition to conventional compute nodes, each cluster has several large memory and GPU specific nodes. Some are connected by an InfiniBand enterprise switch. High-performance 156TB storage for the Linux clusters is provided for users’ home directories and temporary scratch space. Slower storage resources are available for long-term project needs. GACRC also offers consulting, algorithm development and training workshops. Close cooperation between the Center for Simulational Physics and GACRC encourages the incorporation of a variety of advanced computational techniques.

### Области исследований
- Магнитные переходы и экситации
- Структуры и переходы
- Газ-поверхностные и газ-газовые взаимодействия
- Ордер-расстройства в полупроводниковых сплавах
- Сильнодействующие многие-телевые системы
- Полимеры / биополимеры
- Нанокристаллы и кластеры
- Астрофизическая гидродинамика и межзвездное пространство
- Компьютерная атомная и молекулярная астрофизика
- Биоинформатика и компьютерная биофизика
- Квантовая симуляция

### Методы и вычислительное оборудование
Research carried out in the Center for Simulational Physics spans a vast range of length and time scales, from the microscopic to the cosmological. This versatility is the hallmark of computer simulation techniques. Computational methods used in the Center include Monte Carlo, Monte Carlo renormalization group, spin dynamics, molecular dynamics, density functional theory, close-coupling theory and hydrodynamics. Research focuses on both the application of computer simulation techniques to investigate the properties of physical systems, as well as the development of advanced analytical techniques and computational algorithms designed to enhance the efficiency and predictive power of the simulations. The extensive computing facilities available to the Center for Simulational Physics include Xeon systems with dual 16-core CPU’s and 116 Tbyte of network storage, 4 GPU compute nodes, and network access to the central high performance facilities operated by the Georgia Advanced Computing Resource Center (GACRC). Two Linux clusters are available with a total core count of approximately 10,000 compute cores. In addition to conventional compute nodes, each cluster has several large memory and GPU specific nodes. Some are connected by an InfiniBand enterprise switch. High-performance 156TB storage for the Linux clusters is provided for users’ home directories and temporary scratch space. Slower storage resources are available for long-term project needs. GACRC also offers consulting, algorithm development and training workshops. Close cooperation between the Center for Simulational Physics and GACRC encourages the incorporation of a variety of advanced computational techniques.

### Финансовая поддержка
The Center for Simulational Physics and the Department of Physics & Astronomy offer full financial support to qualified applicants in the form of Research and Teaching Assistantships. Exceptionally qualified applicants may receive competitive UGA Graduate Assistantships.

### Расположение университета
UGA is one of the major research universities in the Southeast, offering a broad range of programs to an enrollment of over 34,000 students. Conveniently situated 60 miles from Atlanta and within driving distance of both mountains and ocean, Athens is far enough north to have four distinct seasons. Athens combines a pleasant, Southern small-town atmosphere with the sophistication of a major university, and features a lively cultural scene in music, theater, visual arts and literature.

### Обучение Физике в США?
Here’s How:

### GRADUATE STUDIES IN COMPUTATIONAL PHYSICS
The Doctoral and Masters Program
Center for Simulational Physics
The University of Georgia (UGA)
Athens, GA USA

### Образовательные программы
The Ph.D. program offers broad training. Graduate courses have been designed to give detailed instruction in computer simulation in physics with insight into the development of algorithms for physical problems for which no theory or experiment exists. The Center for Simulational Physics has also organized collaborative research programs with major institutions in the United States, South America, and Europe. The Center organizes an annual Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. Frequent seminars focus on the latest research and introduce some of the world’s finest minds in simulational physics and related areas. Students are provided ample opportunity to participate in national and international meetings.

### преподавательский состав
- D. P. Landau (Director), Ph.D. Yale U., 1967. Phase transitions, adsorbed monolayers, biopolymers, materials science.

### Дополнительная информация
David P. Landau, Director
Center for Simulational Physics
The University of Georgia
Athens, GA 30602-2451 USA
E-MAIL: csp@uga.edu  http://www.csp.uga.edu